Was macht ein Data Analyst?

Die meisten Unternehmen sammeln ständig Unmengen von Daten – doch in ihrer Rohform sind diese Daten nicht wirklich aussagekräftig. An dieser Stelle kommt die Datenanalyse ins Spiel. Datenanalyse ist der Prozess der Analyse von Rohdaten, um aussagekräftige, umsetzbare Erkenntnisse zu gewinnen, die dann als Grundlage für intelligente Geschäftsentscheidungen dienen.

Ein Datenanalyst extrahiert Rohdaten, organisiert sie und analysiert sie dann, indem er sie von unverständlichen Zahlen in kohärente, verständliche Informationen umwandelt. Nach der Interpretation der Daten gibt der Datenanalyst seine Erkenntnisse in Form von Vorschlägen oder Empfehlungen für die nächsten Schritte des Unternehmens weiter.

Man kann sich die Datenanalyse als eine Form der Business Intelligence vorstellen, die zur Lösung spezifischer Probleme und Herausforderungen innerhalb eines Unternehmens eingesetzt wird. Es geht darum, Muster in einem Datensatz zu finden, die Ihnen etwas Nützliches und Relevantes über einen bestimmten Unternehmensbereich sagen können – zum Beispiel, wie sich bestimmte Kundengruppen verhalten oder wie Mitarbeiter mit einem bestimmten Tool umgehen.

Die Datenanalyse hilft Ihnen, die Vergangenheit zu verstehen und künftige Trends und Verhaltensweisen vorherzusagen. Anstatt Ihre Entscheidungen und Strategien auf Vermutungen zu stützen, treffen Sie fundierte Entscheidungen auf der Grundlage der Daten, die Ihnen vorliegen. Mit den aus den Daten gewonnenen Erkenntnissen sind Unternehmen und Organisationen in der Lage, ein viel tieferes Verständnis ihres Publikums, ihrer Branche und ihres Unternehmens als Ganzes zu entwickeln – und sind dadurch viel besser in der Lage, Entscheidungen zu treffen und vorausschauend zu planen.

Hauptverantwortlichkeiten eines Datenanalysten

Die Antwort auf die Frage “Was macht ein Datenanalyst?” hängt von der Art der Organisation und dem Ausmaß ab, in dem ein Unternehmen datengestützte Entscheidungsprozesse eingeführt hat. Im Allgemeinen umfassen die Aufgaben eines Datenanalysten jedoch Folgendes:

  • Übersetzung von großen Datenmengen in verständliche Informationen
  • Verarbeitung von Daten
  • Analyse von Daten
  • Visualisierung von Daten
  • Entwerfen und Pflegen von Datensystemen und Datenbanken; dazu gehört auch das Beheben von Codierungsfehlern und anderen datenbezogenen Problemen.
  • Auswertung von Daten aus primären und sekundären Quellen und anschließende Reorganisation dieser Daten in einem Format, das sowohl von Menschen als auch von Maschinen leicht gelesen werden kann.
  • Verwendung statistischer Werkzeuge zur Interpretation von Datensätzen, wobei besonderes Augenmerk auf Trends und Muster gelegt wird, die für diagnostische und prädiktive Analysen wertvoll sein könnten.
  • Erstellung von Berichten für die Geschäftsleitung, die Trends, Muster und Vorhersagen anhand relevanter Daten effektiv vermitteln.
  • Zusammenarbeit mit den Geschäftsbereichsverantwortlichen bei der Entwicklung von Anforderungen, der Definition von Erfolgsmetriken, der Verwaltung und Durchführung von Analyseprojekten und der Auswertung der Ergebnisse.
  • Proaktive Kommunikation und Zusammenarbeit mit Stakeholdern, Geschäftsbereichen, technischen Teams und Support-Teams zur Definition von Konzepten und Analyse von Bedürfnissen und funktionalen Anforderungen.
  • Sammeln neuer Daten zur Beantwortung von Kundenfragen, Sammeln und Organisieren von Daten aus verschiedenen Quellen.
  • Datenprozesse einrichten, Datenqualitätskriterien definieren und Datenqualitätsprozesse implementieren.

Wie sieht der typische Prozess aus, den ein Data Analyst durchläuft?

Nachdem wir nun die allgemeine Rolle des Datenanalysten geklärt haben, wollen wir uns nun dem eigentlichen Prozess der Datenanalyse widmen.

Schritt 1: Definieren Sie die Frage(n), die Sie beantworten wollen

Der erste Schritt besteht darin, festzustellen, warum Sie eine Analyse durchführen und welche Frage oder Herausforderung Sie zu lösen hoffen. In diesem Stadium gehen Sie von einem klar definierten Problem aus und stellen eine relevante Frage oder Hypothese auf, die Sie testen können. Anschließend müssen Sie festlegen, welche Art von Daten Sie benötigen und woher diese stammen sollen.

Ein Beispiel: Ein potenzielles Geschäftsproblem könnte darin bestehen, dass Kunden nach Ablauf der kostenlosen Testphase keine kostenpflichtige Mitgliedschaft abschließen. Ihre Frage könnte dann lauten: “Welche Strategien können wir anwenden, um die Kundenbindung zu erhöhen?”

Schritt 2: Erfassen Sie die Daten

Wenn Sie eine klare Fragestellung im Kopf haben, können Sie mit der Datenerfassung beginnen. Datenanalysten sammeln in der Regel strukturierte Daten aus primären oder internen Quellen, z. B. aus CRM-Software oder E-Mail-Marketing-Tools. Sie können sich aber auch an sekundäre oder externe Quellen wenden, z. B. an offene Datenquellen. Dazu gehören Regierungsportale, Tools wie Google Trends und Daten, die von großen Organisationen wie UNICEF und der Weltgesundheitsorganisation veröffentlicht werden.

Datenanalysten, die viel im Marketing arbeiten, haben als Quellen auch oft große Marketing-Tools, von Google und Facebook in Kombination von Rohdaten von Google Analytics.

Schritt 3: Bereinigen Sie die Daten

Sobald Sie Ihre Daten gesammelt haben, müssen Sie sie für die Analyse vorbereiten – und das bedeutet eine gründliche Bereinigung Ihres Datensatzes. Ihr ursprünglicher Datensatz kann Duplikate, Anomalien oder fehlende Daten enthalten, die die Interpretation der Daten verzerren könnten. Die Datenbereinigung kann eine zeitaufwändige Aufgabe sein, ist aber entscheidend für die Erzielung genauer Ergebnisse.

Schritt 4: Analysieren Sie die Daten

Wie Sie die Daten analysieren, hängt von der Fragestellung und der Art der Daten ab, mit denen Sie arbeiten. Beispiele für Techniken sind Regressions-, die Cluster- und die Zeitreihenanalyse.

Schritt 5: Visualisieren und teilen Sie Ihre Ergebnisse

In diesem letzten Schritt des Prozesses werden die Daten in wertvolle Geschäftserkenntnisse umgewandelt. Je nach Art der durchgeführten Analyse stellen Sie Ihre Ergebnisse in einer für andere verständlichen Form dar, z. B. in Form eines Diagramms oder einer Grafik.

In dieser Phase zeigen Sie, was die Datenanalyse in Bezug auf Ihre ursprüngliche Frage oder geschäftliche Herausforderung aussagt, und besprechen mit den wichtigsten Stakeholdern, wie es weitergehen soll. Dies ist auch ein guter Zeitpunkt, um etwaige Einschränkungen Ihrer Datenanalyse aufzuzeigen und zu überlegen, welche weiteren Analysen durchgeführt werden könnten.

Welche Fähigkeiten braucht man, um Data Analyst zu werden?

Von Datenanalysten wird erwartet, dass sie bestimmte Fähigkeiten und Fertigkeiten vorweisen können. Hier sind einige der wichtigsten Hard- und Soft Skills, die Sie als Datenanalyst benötigen:

  • Mathematische und statistische Fähigkeiten: Datenanalysten arbeiten einen Großteil ihrer Zeit mit Zahlen, daher ist es selbstverständlich, dass Sie ein mathematisches Gehirn brauchen!
  • Kenntnisse von Programmiersprachen wie SQL und Python: Wie wir gesehen haben, sind Datenanalysten auf eine Reihe von Programmiersprachen angewiesen, um ihre Arbeit zu erledigen. Das mag zunächst abschreckend wirken, ist aber nichts, was man nicht mit der Zeit lernen kann.
  • Eine analytische Denkweise: Es reicht nicht aus, einfach nur die Zahlen zu berechnen und die Ergebnisse mitzuteilen; Datenanalysten müssen in der Lage sein, zu verstehen, was vor sich geht, und bei Bedarf tiefer zu graben.
  • Ausgeprägte Problemlösungsfähigkeiten: Datenanalysten verfügen über eine Vielzahl von Tools und Techniken, und ein wichtiger Teil ihrer Arbeit besteht darin, zu wissen, was sie wann einsetzen müssen. Denken Sie daran: Bei der Datenanalyse geht es um die Beantwortung von Fragen und die Lösung von geschäftlichen Herausforderungen, und das erfordert eine ausgeprägte Problemlösungskompetenz.
  • Ausgezeichnete Kommunikationsfähigkeiten: Sobald Sie aus Ihren Daten wertvolle Erkenntnisse gewonnen haben, ist es wichtig, dass Sie Ihre Ergebnisse so weitergeben, dass sie dem Unternehmen zugute kommen. Datenanalysten arbeiten eng mit den wichtigsten Interessengruppen des Unternehmens zusammen und sind unter Umständen für die Weitergabe und Präsentation ihrer Erkenntnisse an das gesamte Unternehmen verantwortlich. Wenn Sie also mit dem Gedanken spielen, Datenanalyst zu werden, sollten Sie sich vergewissern, dass Sie sich mit diesem Aspekt der Arbeit wohlfühlen.