Im Traffic-Akquisitions-Bericht finden Sie eine Tabelle mit Daten zur Akquise auf Sitzungsebene (Quelle, Medium, Kampagne, Standard-Kanalgruppierung) und einige Engagement-Metriken. Wir werden versuchen, diese Tabelle mit der folgenden Abfrage zu erstellen.
-- subquery to prepare the data
with prep_traffic as (
select
user_pseudo_id,
(select value.int_value from unnest(event_params) where key = 'ga_session_id') as session_id,
max((select value.string_value from unnest(event_params) where key = 'medium')) as medium,
max((select value.string_value from unnest(event_params) where key = 'source')) as source,
max((select value.string_value from unnest(event_params) where key = 'campaign')) as campaign,
max((select value.string_value from unnest(event_params) where key = 'session_engaged')) as session_engaged,
max((select value.int_value from unnest(event_params) where key = 'engagement_time_msec')) as engagement_time_msec,
-- change event_name to the event(s) you want to count
countif(event_name = 'click') as event_count,
-- change event_name to the conversion event(s) you want to count
countif(event_name = 'purchase') as conversions,
sum(ecommerce.purchase_revenue) as total_revenue
from
-- change this to your google analytics 4 bigquery export location
`privat-327611.analytics_266663932.events_*`
where
-- change the date range by using static and/or dynamic dates
_table_suffix between '20211223' and format_date('%Y%m%d',date_sub(current_date(), interval 1 day))
group by
user_pseudo_id,
session_id)
-- main query
select
concat(ifnull(source,'(direct)'),' / ',ifnull(medium,'(none)')) as session_source_medium,
-- ifnull(medium,'(none)') as session_medium,
-- ifnull(source,'(direct)') as session_source,
-- ifnull(campaign,'(direct)') as session_campaign,
/* -- definitions of the channel grouping based on the source / medium of every session
case
when source is null and (medium = '(not set)' or medium is null) then 'Direct'
when medium = 'organic' then 'Organic Search'
when regexp_contains(medium, r'^(social|social-network|social-media|sm|social network|social media)$') then 'Social'
when medium = 'email' then 'Email'
when medium = 'affiliate' then 'Affiliates'
when medium = 'referral' then 'Referral'
when regexp_contains(medium, r'^(cpc|ppc|paidsearch)$') then 'Paid Search'
when regexp_contains(medium, r' ^(cpv|cpa|cpp|content-text)$') then 'Other Advertising'
when regexp_contains(medium, r'^(display|cpm|banner)$') then 'Display'
else '(Other)' end as session_default_channel_grouping,
*/
count(distinct user_pseudo_id) as users,
count(distinct concat(user_pseudo_id,session_id)) as sessions,
count(distinct case when session_engaged = '1' then concat(user_pseudo_id,session_id) end) as engaged_sessions,
safe_divide(sum(engagement_time_msec/1000),count(distinct case when session_engaged = '1' then concat(user_pseudo_id,session_id) end)) as average_engagement_time_per_session_seconds,
safe_divide(count(distinct case when session_engaged = '1' then concat(user_pseudo_id,session_id) end),count(distinct user_pseudo_id)) as engaged_sessions_per_user,
safe_divide(sum(event_count),count(distinct concat(user_pseudo_id,session_id))) as events_per_session,
safe_divide(count(distinct case when session_engaged = '1' then concat(user_pseudo_id,session_id) end),count(distinct concat(user_pseudo_id,session_id))) as engagement_rate,
sum(event_count) as event_count,
sum(conversions) as conversions,
ifnull(sum(total_revenue),0) as total_revenue
from
prep_traffic
group by
session_source_medium
-- ,session_medium
-- ,session_source
-- ,session_campaign
-- ,session_default_channel_grouping
order by
users desc