Im Bericht LebensNutzer-Akquisitions-Bericht finden Sie eine Tabelle mit Daten über die Akquise auf Nutzerebene (Quelle, Medium, Kampagne) und einige Engagement-Metriken. Wir werden versuchen, diese Tabelle mit der folgenden Abfrage zu erstellen.
-- subquery to prepare the data
with prep as (
select
user_pseudo_id,
ifnull(traffic_source.medium,'(not set)') as medium,
ifnull(traffic_source.source,'(not set)') as source,
ifnull(traffic_source.name,'(not set)') as name,
(select value.int_value from unnest(event_params) where key = 'ga_session_id') as session_id,
max((select value.int_value from unnest(event_params) where event_name = 'session_start' and key = 'ga_session_number')) as session_number,
max((select value.string_value from unnest(event_params) where key = 'session_engaged')) as session_engaged,
max((select value.int_value from unnest(event_params) where key = 'engagement_time_msec')) as engagement_time_msec,
-- change event_name to the event(s) you want to count
countif(event_name = 'click') as event_count,
-- change event_name to the conversion event(s) you want to count
countif(event_name = 'purchase') as conversions,
sum(ecommerce.purchase_revenue) as total_revenue
from
-- change this to your google analytics 4 export location in bigquery
`privat-327611.analytics_266663932.events_*`
where
-- change the date range by using static and/or dynamic dates
_table_suffix between '20211223' and format_date('%Y%m%d',date_sub(current_date(), interval 1 day))
group by
user_pseudo_id,
medium,
source,
name,
session_id)
-- main query
select
medium as user_medium,
-- source as user_source,
-- concat(source,' / ',medium) as user_source_medium,
-- name as user_campaign,
count(distinct case when session_number = 1 then user_pseudo_id else null end) as new_users,
count(distinct case when session_engaged = '1' then concat(user_pseudo_id,session_id) end) as engaged_sessions,
safe_divide(count(distinct case when session_engaged = '1' then concat(user_pseudo_id,session_id) end),count(distinct concat(user_pseudo_id,session_id))) as engagement_rate,
safe_divide(count(distinct case when session_engaged = '1' then concat(user_pseudo_id,session_id) end),count(distinct user_pseudo_id)) as engaged_sessions_per_user,
safe_divide(sum(engagement_time_msec/1000),count(distinct case when session_engaged = '1' then concat(user_pseudo_id,session_id) end)) as average_engagement_time_seconds,
sum(event_count) as event_count,
sum(conversions) as conversions,
ifnull(sum(total_revenue),0) as total_revenue
from
prep
group by
user_medium
--,user_source
--,user_source_medium
--,user_campaign
order by
new_users desc