Neuronale Netze sind ein Bereich des maschinellen Lernens, der darauf abzielt, die Art und Weise nachzuahmen, wie das menschliche Gehirn funktioniert. Sie sind eine Art von Modell, das aus vielen vereinfachten Modellen von Neuronen besteht, die als künstliche Neuronen bezeichnet werden. Diese Neuronen sind miteinander verknüpft und arbeiten zusammen, um komplexe Muster in Daten zu erkennen und zu lernen. Durch das Trainieren mit Daten können neuronale Netze lernen, Entscheidungen zu treffen, Vorhersagen zu treffen und viele andere Aufgaben durchzuführen, die menschliche Intelligenz erfordern würden.
weiterlesen…Kategorie: Deep Learning
Künstliches Intelligenz vs. Maschinelles Lernen vs Deep Learning
Willkommen in der Welt der Zukunftstechnologien – Künstliche Intelligenz (KI), Maschinelles Lernen (ML) und Deep Learning (DL). Diese Begriffe haben sich in den letzten Jahren rasant verbreitet und sind zu wichtigen Buzzwords in der Technologiebranche geworden. Aber was bedeuten sie eigentlich und wie unterscheiden sie sich voneinander?
weiterlesen…Das Herz eines Machine Learning-Modells: Training-Sets, Test-Sets und Validation-Sets
Machine Learning ist ein Bereich der künstlichen Intelligenz, der darauf abzielt, maschinelles Lernen zu ermöglichen, indem es Algorithmen und statistische Modelle verwendet, um aus Daten zu lernen. Die Qualität der Daten, die für das Training von Machine-Learning-Modellen verwendet werden, spielt eine entscheidende Rolle bei der Genauigkeit und Zuverlässigkeit dieser Modelle. Dieser Beitrag untersucht die Bedeutung von Training-, Test- und Validation-Sets sowie bewährte Praktiken bei deren Verwendung.
weiterlesen…t-Distributed Stochastic Neighbor Embedding (t-SNE)
t-Distributed Stochastic Neighbor Embedding (t-SNE) ist eine Methode zur Visualisierung von Daten, die in der Datenanalyse und im Machine Learning verwendet wird. t-SNE wurde von Laurens van der Maaten und Geoffrey Hinton entwickelt und ist eine Erweiterung der Stochastic Neighbor Embedding (SNE)-Methode.
weiterlesen…Principal Component Analysis (PCA)
Principal Component Analysis (PCA) ist eine Technik der linearen Algebra, die in der Datenanalyse und im Machine Learning verwendet wird, um die Dimensionalität von Datensätzen zu reduzieren. Mit PCA können wir eine große Anzahl von Variablen in wenige unabhängige Variablen umwandeln, indem wir lineare Kombinationen von Variablen finden, die eine maximale Varianz im Datensatz erklären. Diese neuen Variablen werden als Hauptkomponenten bezeichnet und können verwendet werden, um den Datensatz zu reduzieren oder als Eingabe für andere Machine-Learning-Algorithmen zu dienen.
weiterlesen…